For Every Pile, there is a Pit
Larch 7930/7950 For Every Pile there is a Pit
MWF 1:50-6:15 PM
Knowlton 259
Autumn 2013
Landscape Architecture Section
Knowlton School of Architecture
Ohio State University

Instructors:
Sarah Cowles
cowles.26@osu.edu
276 Knowlton
by appointment

Rob Holmes
rholmes@m.ammoth.us
299 Knowlton Hall
Tuesday 9-11, 2-4

Description
Marble Cliff Quarry, located in Upper Arlington, Ohio, was, for the majority of its operational history, the largest limestone quarry in the United States, occupying over two thousand acres along the Scioto River. Today, that acreage is a rough patchwork of spoil sites, ponds, suburban re-developments on fill, and ruderal forest, capped at its northwestern extent by the active quarry, which is itself over five hundred acres. Marked by haul roads, the scarred earth and rock of recent operations, piles of fresh aggregate, treacherously uneven ponds, and sudden cliffs -- the artificial geomorphology of quarrying -- the active quarry site is the primary focus of this studio.
Between the 1850s, when recorded quarrying operations began at Marble Cliff, and the present day, a succession of tools and instruments has been used to scrap both dimensional stone and aggregate from the quarry: first horse-drawn wagons and black-powder explosives, then steam shovels, rock crushers and railcars, and finally today’s excavators, conveyor belts, and dump trucks. These geomechanical operations can be understood as a crude form of anthropogenic disturbance.

Disturbance, as defined by ecologists, is an event or process that disrupts relationships within ecological systems. Ecologist Stewart Pickett defines disturbance as a discrete event in time that disrupts community structure through killing, displacements, or damaging of individuals. Disturbances result in spatial and formal outcomes, such as the clearing left by a mower or the voids of the quarry. Disturbances operate at many temporal scales, from the instantaneous to the epochal.

As a disturbed site, the Marble Cliff Quarry is literally exceptional: wild and even unsafe in contrast to the development that bounds it; industrial in contrast to adjacent residential neighborhoods; marked by extreme topography in contrast to the flat surrounding terrain of the Columbus Lowland plains; and chemically unusual, suggesting the presence or potential presence of rare biota. The future of the Quarry is uncertain; the Shelly Materials Corporation, which we will work with throughout this studio, does not plan to fill it, and so it is likely to remain unsuitable for the kind of residential redevelopment that has taken place on similar sites throughout Columbus.

Through design, research, field work, experimentation, and discussion, students will explore the ecological, social, economic, experiential, and aesthetic potential of the quarry landscape, now and into the future. In the process of doing so, students will have the opportunity to engage a range of important conversations within contemporary landscape architecture, notably including:

- the relationship between “ecological restoration” and post-disturbance novel ecologies
- the choreography of both industrial operations and the spillover effects they generate
- the design of temporal dimensions of large-scale public landscapes; the manipulation of dynamic landscape processes (such as inundation, erosion, deposition, fertilization, invasion, germination, oxidation, and colonization) to reorganize existing landscapes and call into being new landscapes
- access, safety, and transgression within marginal landscapes
• the utility of physical modeling within the design process as both a generative technique and a means of simulating landscape change towards design development.

COURSE OBJECTIVES
1 Refine landscape design skills, with emphasis on negotiating relationships between design concepts at different scales within a project. Third-year students will pay particular attention to detailing, while second-year students will emphasize larger-scale strategies and urban context.
2 Refine landscape analysis skills, through contextual mapping, field work, and drawing, diagramming, and modeling site processes at various scales.
3 Explore physical modeling as both a generative design technique and a way to simulate, test and refine design concepts.
4 Engage key conversations within contemporary landscape architecture, particularly surrounding the ecological concept of disturbance, the occupation of marginal landscapes, and the role of landscape architecture within active industrial sites.
5 Refine landscape representation skills, utilizing both analog and digital means of drawing and modeling.
6 Engage time and dynamic landscape processes as significant design elements within large-scale public landscapes.

FORMAT
Class meets MWF afternoons. Activities such as group pin-ups or reading discussions will take place on all days not scheduled for project reviews or introductions. The schedule is subject to revision as field trips and guest lectures are added. Project assignments will contain more detailed schedule information.

ASSIGNMENT STRUCTURE
Assignment supplements will be provided with a detailed schedule for the duration of the assignment, a description of the goals of the assignment, and specific products required at the end of the assignment.

READINGS AND DISCUSSIONS
In addition to the general bibliography provided at the end of this syllabus, specific readings will be assigned for discussion on particular dates in conjunction with the assignments issued throughout the semester.

SUGGESTED SUPPLIES
Basic drafting supplies
Corrugated cardboard & chipboard
Colored papers
Textured papers
Fibers, fabric, meshes
Different colored tapes
Spray mount
Acrylic gels
Powdered graphite
Twine, cords
Floral and picture wire
Roma Plastilina (not Sculpey)

Pastels or large graphite sticks
Wax
Plaster
Knives
Woodcarving tools & gouges
Scissors
Bristles (from cleaning brushes, etc)
Small pieces of wood
Found objects
Glues
Foam insulation board (for CNC routing)
Plywood (for CNC routing)

SOFTWARE
Adobe Suite
Rhino
AutoCAD
ArcGIS
Please note: use of Sketchup is prohibited.

STUDENT CONDUCT
Students are required to adhere to all codes and academic policies of The Ohio State University and the Knowlton School of Architecture. In particular, plagiarism (the use of the ideas, words
or works of intellectual content of another person as if they are oneís own or without crediting the source) is strictly forbidden.

The Student Code of Conduct (http://studentaffairs.osu.edu/resource_csc.asp) defines academic misconduct as: any activity that tends to compromise the academic integrity of the university, or subvert the educational process. All students are required to review the code and understand the implications of a code violation. If there is any suspicion of academic misconduct, the faculty member/instructor will report the alleged violation to the section head and the Committee on Academic Misconduct (http://oaa.osu.edu/coam/home.html) for investigation and any further action.

Other misconduct includes damage to, alteration of or other improper use of university equipment and property. The facilities of Knowlton Hall are for your use, but they are also for the use of students who come after you. Please take appropriate care in your use of the facilities.

Since Knowlton Hall is a 24/7 facility for our students and faculty, it is imperative that all safety procedures be followed. With regard to maintaining secured access after normal business hours, do not prop doors open. Maintain and secure your personal items in lockable storage or by other approved means. Work and study in a responsible manner so as not to create or provide potential fire/safety hazards in the building or its environs. If you observe such conditions, please report them to the building coordinator or the Directorís Office.

Attention is called to the Universityís Sexual Harassment Policy 1.15 (https://hr.osu.edu/policy/policy115.pdf). Prompt action will be taken to report and correct any problems should they occur. If a student feels they have been the subject of harassment, or if others observe such harassment, it should be reported immediately to the faculty member in charge, section head or director of the school.

STUDENT RESOURCES
If you need an accommodation related to a disability, you should contact the Office for Disability Services or the ADA Coordinatorís Office for assistance in verifying the need for accommodations and developing accommodation strategies. Your needs and potential accommodations will be considered relative to the course format. If you have not previously contacted the Office for Disability Services, you are encouraged to do so.
ADA Coordinatorís Office: http://ada.osu.edu
Office for Disability Services: http://www.ods.ohio-state.edu/
(614) 292-3307 | Fax: (614) 292-4190 | TDD: (614) 292-0901
Other resources for students can be found at: http://studentaffairs.osu.edu.

PERFORMANCE EVALUATION AND GRADING
The following criteria will be used in evaluation of a participantís progress during the semester, and will be used to determine the participantís final grade. Students are REQUIRED to perform a self-evaluation at the mid-term and close of the course using this criteria. The instructor will meet with students individually to discuss their self-evaluations.

1. Conceptual development
Did the student's design project engage the theoretical topics presented in the studio brief, precedent research, and readings?

2. Productive experimentation & risk taking
Did the student consistently draw, model, and test ideas? Are there a clear series of experiments that led to moments of resolution? Did the participant produce both rigorous, scaled study models and drawings with new iterations ready for each class meeting? Did they resolve the studies into legible presentation materials when needed?

3. Participation and collaboration
Did the student engage in productive collaborations with other students? Did the student act
as a leader, or were they a very diligent follower and indispensable team member?

4. Response to criticism
Did the student interpret and develop their work based on feedback?

5. Self-direction and ambition
Did the student actively seek information and resources outside of the examples and assigned readings presented in the studio by the professor?

6. Presentation
Did the student effectively communicate the intentions of their project both verbally and graphically?

7. Exploration
Did the student return to the site periodically to ground-truth design concepts?

Grades will be awarded using the following letter scale:
A exceeds expectations in every way, with distinguished mastery of material
B consistent and strong work that meets requirements and evidences moments of exceptional development with good mastery of material
C satisfactory work, meets basic requirements with basic mastery of material
D unsatisfactory work, does not meet all requirements
F failing or incomplete

DIGITAL SUBMISSIONS
At the end of each assignment, all due work should be uploaded to the course Dropbox before presentation. No grades will be assigned to work that has not been uploaded. An appropriate folder will be provided within the Dropbox. Files should be named using the following convention: “PIT_[assignment number]_[last name]_[description]”. For instance, if Rob turned in a description of findings for assignment 1, it would be labeled “PIT_1_Holmes_findings.pdf”. Files not properly named will be treated as late work and evaluated accordingly.

Final grades will not be issued until students submit an archive of work on 2 duplicate CDs or DVDs. File specifications will be issued during the semester. DROPBOX? Per University policy, all work is property of the Ohio State University to be used for educational and promotional purposes. 2 projects from each studio will be selected for inclusion in the KSA digital archive, and 3 projects will be selected for accreditation purposes.

ATTENDANCE POLICY
Attendance is mandatory for the scheduled duration of studio sessions (MWF 1:50 PM to 6:15 PM). More than one unexcused absence will constitute grounds for placement on attendance probation. Since most class meetings or general discussions will take place at the beginning of the class period, it is important that all students should be in the studio promptly at 1:50 PM. Arriving late or leaving early, unless authorized by the instructor, will be considered an unexcused absence.

SCHEDULE
3.1 M 9/2 Labor Day
5.2 W 9/18 Rob @ U Minnesota
9.1 M 10/14 Mid-review
9.3 F 10/18 Student mid-term self-evaluations due
11.1 M 10/28 Veteran’s Day
15.1 M 11/25 FINAL REVIEWS
15.2 T 11/26 Student final self-evaluations due
REFERENCES

RESOURCE EXTRACTION AND POST-MINING LANDSCAPES

DESIGN PROJECTS (Re-USE)

TOPOS 69: Re-Use

PAISEA 016: Scars

LANDSCAPE THEORY

TERRAIN VAGUE AND MARGINAL LANDSCAPE

LANDSCAPE TECHNOLOGY & SYSTEMS

LAND & ECOLOGICAL ART

PAISEA 018: Landscape and Art

CONSTRUCTION TECHNIQUES & DETAILS

LANDSCAPE REPRESENTATION
Abrams, Janet, and Peter Hall. Else/where: Mapping New Cartographies of Networks and Territories. Minneapolis, MN: University of Minnesota Design Institute, 2006

PAISEA 014: Representation.

Rankin, Bill. http://www.radicalcartography.net/

ECOLOGY

Dunnett, Nigel, and James Hitchmough. The dynamic landscape: design, ecology and

TOPOS 83: Plants in Design

